
From ER Models to Dimensional Models Part II: 
Advanced Design Issues 

Daniel L. Moody  

Department of Software Engineering 
Charles University 
Prague, Czech Republic 
email: moody@ksint.ms.mff.cuni.cz 

School of Business Systems, 
Monash University 

Melbourne, Australia 3800 
email: dmoody@infotech.monash.edu.au 

Mark A.R. Kortink 
Kortink & Associates 

1 Eildon Rd, St Kilda, Melbourne, Australia 3182 
mark@kortink.com 

1. INTRODUCTION 

The first article in this series, which appeared in the Summer 2003 issue of the Journal 
of Business Intelligence (Moody and Kortink, 2003), described how to design a set of 
star schemas based on a data model represented in Entity Relationship (ER) form.  
However as in most design problems, there are many exceptions, special cases and al-
ternatives that arise in practice.  In this article, we discuss some advanced design issues 
that need to be considered.  These include: 

• 
• 
• 
• 
• 

• 
• 

Alternative dimensional structures: snowflake schemas and starflake schemas 
Slowly changing dimensions 
Minidimensions 
Heterogeneous star schemas (dimensional subtypes) 
Dealing with non–hierarchically structured data in the underlying ER model: 

o Many-to-many relationships 
o Recursive relationships 
o Subtypes and supertypes 

The same example data model as used in the first article is used throughout to illus-
trate these issues. 

2. ALTERNATIVE DIMENSIONAL 
STRUCTURES: STARS, SNOWFLAKES AND 
STARFLAKES 

While the star schema is the most commonly used dimensional structure, there are (at 
least) two alternative structures which can be used: 

Snowflake schema 
Starflake schema 
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Snowflake Schema 

A snowflake schema is a star schema with fully normalised dimensions – it gets its 
name because it forms a shape similar to a snowflake.  Rather than having a regular 
structure like a star schema, the “arms” of the snowflake can grow to arbitrary lengths 

in each direction.  A snowflake schema can be produced 
from a star schema by normalising each dimension table. 
Alternatively, it can be produced directly from an ER 
model by following the same steps in producing a star 
schema but skipping Step 4.2 (Collapse Hierarchies).  In-

stead of collapsing classification entities into component entities to form dimension 
tables, they form the “arms” of the snowflake.  The design of the fact table is the same 
as for the star schema.   shows the snowflake schema which results for the Or-
der Item transaction. 

The performance impact of snowflaking 
depends on the DBMS and/or OLAP 

tool used 

Figure 1

Figure 1. Snowflake Schema for Order Item Transaction 
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Kimball (1996) argues that “snowflaking” is undesirable because it adds unnecessary 
complexity, reduces query performance and doesn’t substantially reduce storage space.  
However empirical tests show that the performance impact of snowflaking depends on 
the DBMS and/or OLAP tool used: some favour snowflakes while others favour star 
schemas (Spencer and Loukas, 1999).  An advantage of the snowflake representation is 
that it explicitly shows the hierarchical structure of each dimension, which can help in 
understanding how the data can be sensibly analysed.  Thus, whether a snowflake or a 
star schema is used at the physical level, views should be used to enable the user to see 
the structure of each dimension as required. 
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Starflake Schema 

A star schema is a dimensional model with fully denormalised hierarchies, while a 
snowflake schema is a dimensional model with fully normalised hierarchies.  However 
as in many design problems, the best solution is often a balance between two extremes.  
A starflake schema represents a compromise between a star schema and a snowflake 
schema.  It is a star schema which is selectively normalised (or “snowflaked”) to re-
move overlap between dimensions.  Overlap between dimensions is undesirable as it 
increases complexity of load processes and can lead to inconsistent query results if hi-
erarchies become inconsistent.  Potential overlap between dimensions can be identified 
by branch entities in the underlying ER model.  A branch entity is a classification entity 
with multiple one-to-many relationships – this indicates a point of intersection between 
hierarchies. In the example, Postal Area forms a branch entity (Figure 2).  Postal Area is 
the “parent” of Customer and Retail Outlet, which are both components of the Order 
transaction.  In the star schema representation, Postal Area, City, State and Country 
were included in both the Customer and Retail Outlet dimensions when hierarchies 
were collapsed.  
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Figure 2.  Overlapping Hierarchies in Example Data Model 

A starflake schema is a star schema in which shared hierarchical segments are sepa-
rated out into subdimension tables.  These represent “highest common factors” between 
dimensions. A starflake schema is formed by collapsing classification entities from the 
top of each hierarchy until they reach either a branch en-
tity or a component entity.  If a branch entity is reached, a 
subdimension table is formed.  Collapsing then begins 
again after the branch entity.  When a component entity is 
reached, a dimension table is formed.   shows the 
starflake schema which results for the Order Item transac-
tion.  The overlap between the Customer and Retail Outlet dimensions has been re-
moved, with the common Postal Area-City-State-Country hierarchical segment fac-
tored out into a shared subdimension table.  Again, the design of the fact table is the 
same as for the star schema. 

A starflake schema is a star schema 
which is selectively normalised or 
“snowflaked” to remove overlap 

between dimensions Figure 3
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Figure 3.  Starflake Schema for Order Item Transaction 

Dimensional Design Trade-Offs 

The alternative dimensional structures considered here represent different trade-offs 
between complexity and redundancy: 

The star schema is the simplest structure, as it contains the least number of tables – 
8 tables in the example.  However it also has the highest level of data redundancy, 
as the dimension tables all violate third normal form (3NF).  This maximises un-
derstanding and simplifies queries to pairwise joins between tables. 

• 

• 

• 

The snowflake schema has the most complex structure and consists of more than 
five times as many tables as the star schema representation (41 in the example).  
This will require multi-table joins to satisfy queries. 
The starflake schema has a slightly more complex structure than the star schema – 
9 tables in the example.  However while it has redundancy within each table (the 
dimension tables and subdimension tables all violate 3NF), redundancy between 
dimensions is eliminated, thus reducing the possibility of inconsistency between 
them. 

All of these structures are semantically equivalent: they all contain the same data and 
support the same set of queries.  As a result, views may be used to construct any of 
these structures from any other.   

3. REFINEMENT OF THE DIMENSIONAL 
MODEL 

Like most design tasks, dimensional modelling tends to be an iterative process.  The 
first cut dimensional model may be refined in various ways to better support historical 
analysis, simplify user queries or improve query efficiency.  Here we discuss some of 
the most important refinements which may be made to a dimensional model. 
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Slowly Changing Dimensions 

This is one of the most important design issues in dimensional modelling (Kimball, 
1996).  A slowly changing dimension is a dimension table in which a new row is created 
each time the underlying component entity changes some important characteristic.  
The purpose of this is to record the state of the dimension 
entity at the time each transaction took place.  This is very dif-
ferent to how changes are handled in operational systems: 
no matter how a customer changes, we want to ensure that 
we have only one customer row in the customer table.  In 
fact, in CRM systems, a great deal of effort is expended to ensure that duplicate records 
are not created for the same customer.  In a slowly changing dimension, we create a 
new instance of the customer each time they change address, marital status, employ-
ment status etc.  Thus each row in a slowly changing dimension does not correspond to 
a different entity per se but a different “state” of that entity – a “snapshot” of the entity 
at a point in time.   

To create a slowly changing dimension table, the following design steps are required: 

Define which attributes of the dimension entity need to be tracked over time. 
This defines the conditions for creating each new dimensional instance. 

• 

• 

• 

• 

Generalise the key of the dimensional table to enable tracking of state changes.  
Usually this involves adding a version number to the original key of the dimen-
sion table. 

Apart from the generalised key, the structure of the slowly changing dimension is the 
same as the original dimension.  However insertion and update processes for the table 
will need to be modified significantly. 

Splitting Dimensions: “Minidimensions” 

In practice, dimension tables often consist of millions of 
rows, making them unmanageable for browsing pur-
poses.  To address this issue, the most heavily used at-
tributes (e.g. demographic fields for customer dimen-
sions) may be separated out into a minidimension table.  
This can improve performance significantly for the most 

common queries.  The minidimension should contain a subset of attributes that can be 
efficiently browsed.  As a rule of thumb, there should be less than 100,000 combina-
tions of attribute values in a minidimension (i.e. less than 100,000 rows) to facilitate ef-
ficient browsing (Kimball, 1996).  The number of attribute value combinations in a 
minidimension can be limited by: 

A slowly changing dimension is one in 
which a new row is created each time 
the underlying entity changes its “state” 

A minidimension is a dimension table 
derived from a larger dimension table 
which contains a subset of attributes 

that can be efficiently browsed 

Including attributes in the minidimension that have discrete values (i.e. whose 
underlying domains consist of a fixed set of values).  Demographic classifications 
like marital status, gender and education level fall into this category. 
Grouping continuously valued attributes into “bands”.  For example, age could 
be converted to a set of discrete ranges like child (0-17), young adult (18-29), 
adult (30-49), mature adult (50-64), senior citizen (65+). 

Figure 4 shows how in the Order Item Star Schema, customer demographics could be 
factored out into a minidimension table.  Some of the attributes in the original table 
have been transformed to reduce the number of rows in the minidimension table:  
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Number of Employees and Annual Revenue have been converted to ranges. • 
• Date of First Order has been converted to Years of Service.  This reduces the 

number of combinations to multiples of years rather than all possible dates. 
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Figure 4. Minidimension Table (Detailed Level Design) 

Combining Dimensions 

The process of creating separate dimension tables for each component entity can some-
times result in an unmanageably large number of dimensions.  This is often the case 
when there are a large number of classification entities attached directly to the transac-
tion entity, representing very shallow (single level) hierarchies.  Rather than create a lot 
of very small (possibly degenerate) dimension tables, these may be combined into a 
single dimension, with each row representing a valid combination of values.  As a rule 
of thumb, there should be no more than seven dimensions in each star schema to en-
sure that it is cognitively manageable in size (following the “seven, plus or minus two” 
principle). 

4. DEALING WITH NON-HIERARCHICAL 
DATA 

A major source of complexity in dimensional modelling is dealing with non-
hierarchically structured data.  As discussed in the previous article, dimensional mod-
els assume an underlying hierarchical structure and therefore exclude data that is natu-
rally non-hierarchical.  The transformation procedure described in the previous article 
effectively “weeds out” non-hierarchically structured data from the underlying ER 
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model in the first step (classification of entities).  So what do we do if important deci-
sion making data is stored in the form of many-to-many relationships?  In this section, 
we describe how to handle some particular types of non-hierarchical structures that 
commonly occur in practice: 

Many-to-many relationships: these define network structures among entities, and 
cause major headaches in dimensional modelling because they occur so fre-
quently in ER models. 

• 

• 

• 

• 
• 
• 

Recursive relationships: these represent “hidden” hierarchies, in which the levels 
of the hierarchy are represented in data instances rather than the data structure. 
Generalisation hierarchies: subtypes and supertypes require special handling in 
dimensional modelling, because of the issue of optional attributes.  These repre-
sent hierarchies at the meta-data level only – data instances are not hierarchically 
related to each other so cannot be treated as hierarchies for dimensional model-
ling purposes. 

Many-to-Many Relationships 

Many-to-many relationships cause major headaches in 
dimensional modelling for two reasons.  Firstly, they 
define network structures and therefore do not fit the hierarchical structure of a dimen-
sional model.  Secondly, they occur very commonly in practice.  Here we consider 
three types of many-to-many relationships which commonly occur in practice: 

Most of the complexities involved in 
“dimensionalising” ER models result 
from many-to-many relationships 

Time-dependent (history) relationships 
Generic (multiple role) relationships 
Multi-valued dependencies (“true” many-to-many relationships) 

To include such relationships in a dimensional model generally requires converting 
them to one-to-many (hierarchical) relationships.   

Type 1. Time-dependent (Historical) Relationships 
A special type of many-to-many relationship which occurs very commonly in data 
warehousing applications is one which records the history of a single-valued relation-
ship or attribute over time.  That is, the attribute or relationship has only one value at a 
specific point in time, but has multiple values over time.  As an illustration of this, 
suppose that history is maintained of employee positions in the example data model.  
As shown in Figure 5, the many-to-many relationship which results (Employee Posi-
tion History) breaks the hierarchical chain and Position Type can no longer be col-
lapsed into its associated component entity (Employee). 

Journal of Business Intelligence  Page 7 



From ER Models to Dimensional Models: Advanced Design Issues 
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Employment 
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Figure 5. Time-dependent (Historical) Relationship 

There are two ways to handle this situation: 

• 

• 

ble is the employee’s position at the time of the order, 

a model, an employee may 
have a number of possible roles in an order: 

• 
• 
• They may dispatch the order 

This ole 
type” entity used to distinguish between the different types of relationships ( 

models  in practice (Hay, 1996, Barker, 
1990, Allworth, 1999, Simsion and Witt, 2001). 

Ignore history: Convert the historical relationship to a “point in time” relation-
ship, which records the current value of the relationship or attribute.  In the ex-
ample, this would mean converting Employee Position History to a one-to-many 
relationship between Employee and Position Type, which records the employee’s 
current position.  Position Type can then be collapsed into the Employee entity, 
and the Employee dimension will record the employee’s current position (i.e. at 
the time of the query).  The history of previous positions (including their position 
at the time of the order) will be lost.  A disadvantage of this solution is that it 
may result in (apparently) inconsistent results to queries about past events. 

Slowly changing dimension: Define Employee as a slowly changing dimension 
and create a new instance in the Employee dimension table when an employee 
changes position.  This means that Position Type becomes single valued with re-
spect to Employee, since each instance in the Employee table now represents a 
snapshot at a point in time, and an employee can only have one position at a 
point in time.  Position Type can again be collapsed into the Employee dimen-
sion.  The difference between this and the previous solution is that the position 
recorded in the dimension ta
not at the time of the query. 

Type 2. Generic (Multiple Role) Relationships 
Another situation which commonly occurs in practice is when a many-to-many rela-
tionship is used to represent a fixed number of different types of relationships between 
the same two entities.  These correspond to different roles that an entity may play in 
relation to another entity.  For example, in the example dat

They may receive the order 
They may approve the order 

 may be represented in an ER model as a many-to-many relationship with a “r

Figure 6).  This is a recurring pattern in data 
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The intersection entity between Employee and Order means that Employee cannot be 
considered as a component of the Order transaction, and therefore orders cannot be 
analysed by employee characteristics.  To convert such a structure to dimensional 

form, the different types of relationships or roles represented by the generic relation-
ship need to be factored out into separate one-to-many relationships ( 

Employee
Employee 

Order 
Relationship

Order

Employee 
Order Role

"Role Type" 
Entity

Employee Order
received

dispatched
approved

 

Figure 6

Figure 6. Generic (Multiple Role) Relationship Converted to Specific Relationships 

).  Once this is done, Employee becomes a component of the Order transaction, 
and can form a dimension in the resulting star schema. 

Type 3. Multi-Valued Dependency (True Many-to-Many Relationship) 
The final type of many-to-many relationship is when a true multi-valued dependency 
(MVD) exists between two entities: that is, when many entities of one type can be asso-
ciated in the same type of relationship with many entities of another type at a single point 
in time.  For example, in Figure 7, each customer may be involved in multiple indus-
tries. The intersection entity Customer Industry “breaks” the hierarchical chain and the 
industry hierarchy cannot be collapsed into the Customer component entity. 

Industry 
Group

Industry 
Sector

Industry 
Class

Customer 
Industry

Customer Order

 
Figure 7. Multi-Valued Dependency (MVD) 

One way of handling this is to convert the Customer Industry relationship to a one-to-
many relationship, by identifying the main or “principal” industry for each customer.  
While each customer may be involved in many industries, there will generally be one 
industry in which they are primarily involved (e.g. earn most of their revenue).  This 
converts the relationship into a one-to-many relationship, which means it can then be 
collapsed into the Customer table (Figure 8).  Manual conversion effort may be re-
quired to identify which is the main industry if this is not recorded in the underlying 
production system. 
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Industry 
Class Customer Order
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Figure 8. Conversion of Many-to-Many Relationship to One-to-Many Relationship 
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Recursive Relationships 

Hierarchies are commonly represented in ER models using recursive relationships (Hay, 
1996, Simsion and Witt, 2001).  Using a recursive relationship, the levels of the hierar-
chy are represented as data instances rather than as entities.  This gives a much more 
flexible structure, which can more easily handle changes in the levels of the hierarchy 
(Moody, 1996).  However such structures are less useful in a data warehousing envi-
ronment, as they reduce understandability to end users and increase complexity of 
queries (Spencer and Loukas, 1999).  In converting an ER model to dimensional form, 
recursive relationships must be converted to explicit hierarchies, with each level shown 
as a separate entity.  For example, the industry classification hierarchy in the example 
data model may be shown in ER form as a recursive relationship (Figure 9).  To convert 
this to dimensional form, each row in the Industry Classification Type entity becomes a 
separate entity.  Once this is done, the levels of the hierarchy (which become classifica-
tion entities) can be easily collapsed to form dimensions. 

Industry 
Group

Industry 
Sector

Industry Class

Industry 
Classification

Industry 
Classification 

Type

Instances: 
Industry Group 
Industry Sector 
Industry Class

 
Figure 9. Conversion of Recursive Relationship to Explicit Hierarchy 

Generalisation Hierarchies: Subtypes and Supertypes 

In the simplest case, supertype/subtype relationships can be converted to dimensional 
form by merging the subtypes into the supertype and creating a “type” entity to dis-
tinguish between them.  This can then be converted to a dimensional model in a 
straightforward manner as it forms a simple (two level) hierarchy.  This will result in a 
dimension table with optional attributes for each subtype.  This is the recommended 
approach when there is a relatively small number of subtype specific attributes and/or 
relationships. 

In the more complex case – when there are many subtype-specific attributes and when 
different transaction entity attributes are applicable for different subtypes – separate 
dimensional models may need to be created for the supertype and each of the sub-
types.  These are called heterogeneous star schemas, and are the dimensional equivalent 
of subtypes and supertypes.  In general, this will result in n+1 star schemas, where n is 
the number of subtypes (see Figure 10): 

One Core Star Schema (“dimensional supertype”): This will consist of a core fact 
table, a core dimension table plus other (non-subtyped) dimension tables.  The core 
dimension table will contain all attributes of the supertype while the core fact ta-
ble will contain transaction attributes (facts) that are common to all subtypes.   

• 
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• 

btype. 

Multiple Custom Star Schemas (“dimensional subtypes”): A separate Customer 
Star Schema should be optionally created for each subtype in the underlying ER 
model.  Each custom star schema will consist of a custom fact table, a custom di-
mension table plus other (non-subtyped) dimension tables.  Each custom dimen-
sion table will contain all common attributes plus attributes specific to that sub-
type.  The custom fact table will contain all common facts plus facts applicable 
only to that su
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Figure 10.  Heterogeneous Star Schemas (“Dimensional Subtyping”) 

5. CONCLUSION 

Of course, there are many other ways a dimensional model can be refined and many 
other exceptions which can arise in practice.  However it is impossible to prescribe how 
to handle all such situations in advance.  In this article, we have focused on the most 
important issues you are likely to encounter in practice.  Being aware of these should 
be enough to get you to a workable dimensional model in most situations.  Beyond 
this, there is no substitute for experience… 
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