
From ER Models to Dimensional Models Part II:
Advanced Design Issues

Daniel L. Moody

Department of Software Engineering
Charles University
Prague, Czech Republic
email: moody@ksint.ms.mff.cuni.cz

School of Business Systems,
Monash University

Melbourne, Australia 3800
email: dmoody@infotech.monash.edu.au

Mark A.R. Kortink
Kortink & Associates

1 Eildon Rd, St Kilda, Melbourne, Australia 3182
mark@kortink.com

1. INTRODUCTION

The first article in this series, which appeared in the Summer 2003 issue of the Journal
of Business Intelligence (Moody and Kortink, 2003), described how to design a set of
star schemas based on a data model represented in Entity Relationship (ER) form.
However as in most design problems, there are many exceptions, special cases and al-
ternatives that arise in practice. In this article, we discuss some advanced design issues
that need to be considered. These include:

•
•
•
•
•

•
•

Alternative dimensional structures: snowflake schemas and starflake schemas
Slowly changing dimensions
Minidimensions
Heterogeneous star schemas (dimensional subtypes)
Dealing with non–hierarchically structured data in the underlying ER model:

o Many-to-many relationships
o Recursive relationships
o Subtypes and supertypes

The same example data model as used in the first article is used throughout to illus-
trate these issues.

2. ALTERNATIVE DIMENSIONAL
STRUCTURES: STARS, SNOWFLAKES AND
STARFLAKES

While the star schema is the most commonly used dimensional structure, there are (at
least) two alternative structures which can be used:

Snowflake schema
Starflake schema

Journal of Business Intelligence Page 1

From ER Models to Dimensional Models: Advanced Design Issues

Snowflake Schema

A snowflake schema is a star schema with fully normalised dimensions – it gets its
name because it forms a shape similar to a snowflake. Rather than having a regular
structure like a star schema, the “arms” of the snowflake can grow to arbitrary lengths

in each direction. A snowflake schema can be produced
from a star schema by normalising each dimension table.
Alternatively, it can be produced directly from an ER
model by following the same steps in producing a star
schema but skipping Step 4.2 (Collapse Hierarchies). In-

stead of collapsing classification entities into component entities to form dimension
tables, they form the “arms” of the snowflake. The design of the fact table is the same
as for the star schema. shows the snowflake schema which results for the Or-
der Item transaction.

The performance impact of snowflaking
depends on the DBMS and/or OLAP

tool used

Figure 1

Figure 1. Snowflake Schema for Order Item Transaction

Date

Month

Year

Day of
Week

Season

Public
Holiday

Product
Order

Item Fact
Customer

Market
Segment

Sales District Store Type

City

Retail
Outlet

Market
SectorBrand

Package
Type

Postal Area

Sales Region

Industry
Type

Industry
Class

Industry
Group

Employee
Position

Type Delivery
Method

Carrier

State Country

Priority

Product
Subcategory

Product
Category

Tax Status

Employment
Status

Postal Area

City

State

Country

duplication between dimensions

Union Status

Education
Level

Import/
Export
Status

Inventory
Status

Kimball (1996) argues that “snowflaking” is undesirable because it adds unnecessary
complexity, reduces query performance and doesn’t substantially reduce storage space.
However empirical tests show that the performance impact of snowflaking depends on
the DBMS and/or OLAP tool used: some favour snowflakes while others favour star
schemas (Spencer and Loukas, 1999). An advantage of the snowflake representation is
that it explicitly shows the hierarchical structure of each dimension, which can help in
understanding how the data can be sensibly analysed. Thus, whether a snowflake or a
star schema is used at the physical level, views should be used to enable the user to see
the structure of each dimension as required.

Journal of Business Intelligence Page 2

From ER Models to Dimensional Models: Advanced Design Issues

Starflake Schema

A star schema is a dimensional model with fully denormalised hierarchies, while a
snowflake schema is a dimensional model with fully normalised hierarchies. However
as in many design problems, the best solution is often a balance between two extremes.
A starflake schema represents a compromise between a star schema and a snowflake
schema. It is a star schema which is selectively normalised (or “snowflaked”) to re-
move overlap between dimensions. Overlap between dimensions is undesirable as it
increases complexity of load processes and can lead to inconsistent query results if hi-
erarchies become inconsistent. Potential overlap between dimensions can be identified
by branch entities in the underlying ER model. A branch entity is a classification entity
with multiple one-to-many relationships – this indicates a point of intersection between
hierarchies. In the example, Postal Area forms a branch entity (Figure 2). Postal Area is
the “parent” of Customer and Retail Outlet, which are both components of the Order
transaction. In the star schema representation, Postal Area, City, State and Country
were included in both the Customer and Retail Outlet dimensions when hierarchies
were collapsed.

Postal AreaOrder

Customer

Sales District

State

Retail
Outlet

Customer
Dimension

Retail Outlet
Dimension

OverlapCountry

Market
Segment

Industry
Sector

Industry
Group

Industry
Category

Sales Region

City

Industry
Group

Store Type

Figure 2. Overlapping Hierarchies in Example Data Model

A starflake schema is a star schema in which shared hierarchical segments are sepa-
rated out into subdimension tables. These represent “highest common factors” between
dimensions. A starflake schema is formed by collapsing classification entities from the
top of each hierarchy until they reach either a branch en-
tity or a component entity. If a branch entity is reached, a
subdimension table is formed. Collapsing then begins
again after the branch entity. When a component entity is
reached, a dimension table is formed. shows the
starflake schema which results for the Order Item transac-
tion. The overlap between the Customer and Retail Outlet dimensions has been re-
moved, with the common Postal Area-City-State-Country hierarchical segment fac-
tored out into a shared subdimension table. Again, the design of the fact table is the
same as for the star schema.

A starflake schema is a star schema
which is selectively normalised or
“snowflaked” to remove overlap

between dimensions Figure 3

Journal of Business Intelligence Page 3

From ER Models to Dimensional Models: Advanced Design Issues

Order Item
Fact

Delivery Type

Customer

Date

Product"WHO"
Dimension

"HOW"
Dimension

"WHAT"
Dimension

"WHEN"
Dimension

Employee

"WHO"
Dimension

order posted

Retail Outlet

"WHERE"
Dimension

Order

"Degenerate"
Dimension

Postal Area

Shared
Subdimension

Figure 3. Starflake Schema for Order Item Transaction

Dimensional Design Trade-Offs

The alternative dimensional structures considered here represent different trade-offs
between complexity and redundancy:

The star schema is the simplest structure, as it contains the least number of tables –
8 tables in the example. However it also has the highest level of data redundancy,
as the dimension tables all violate third normal form (3NF). This maximises un-
derstanding and simplifies queries to pairwise joins between tables.

•

•

•

The snowflake schema has the most complex structure and consists of more than
five times as many tables as the star schema representation (41 in the example).
This will require multi-table joins to satisfy queries.
The starflake schema has a slightly more complex structure than the star schema –
9 tables in the example. However while it has redundancy within each table (the
dimension tables and subdimension tables all violate 3NF), redundancy between
dimensions is eliminated, thus reducing the possibility of inconsistency between
them.

All of these structures are semantically equivalent: they all contain the same data and
support the same set of queries. As a result, views may be used to construct any of
these structures from any other.

3. REFINEMENT OF THE DIMENSIONAL
MODEL

Like most design tasks, dimensional modelling tends to be an iterative process. The
first cut dimensional model may be refined in various ways to better support historical
analysis, simplify user queries or improve query efficiency. Here we discuss some of
the most important refinements which may be made to a dimensional model.

Journal of Business Intelligence Page 4

From ER Models to Dimensional Models: Advanced Design Issues

Slowly Changing Dimensions

This is one of the most important design issues in dimensional modelling (Kimball,
1996). A slowly changing dimension is a dimension table in which a new row is created
each time the underlying component entity changes some important characteristic.
The purpose of this is to record the state of the dimension
entity at the time each transaction took place. This is very dif-
ferent to how changes are handled in operational systems:
no matter how a customer changes, we want to ensure that
we have only one customer row in the customer table. In
fact, in CRM systems, a great deal of effort is expended to ensure that duplicate records
are not created for the same customer. In a slowly changing dimension, we create a
new instance of the customer each time they change address, marital status, employ-
ment status etc. Thus each row in a slowly changing dimension does not correspond to
a different entity per se but a different “state” of that entity – a “snapshot” of the entity
at a point in time.

To create a slowly changing dimension table, the following design steps are required:

Define which attributes of the dimension entity need to be tracked over time.
This defines the conditions for creating each new dimensional instance.

•

•

•

•

Generalise the key of the dimensional table to enable tracking of state changes.
Usually this involves adding a version number to the original key of the dimen-
sion table.

Apart from the generalised key, the structure of the slowly changing dimension is the
same as the original dimension. However insertion and update processes for the table
will need to be modified significantly.

Splitting Dimensions: “Minidimensions”

In practice, dimension tables often consist of millions of
rows, making them unmanageable for browsing pur-
poses. To address this issue, the most heavily used at-
tributes (e.g. demographic fields for customer dimen-
sions) may be separated out into a minidimension table.
This can improve performance significantly for the most

common queries. The minidimension should contain a subset of attributes that can be
efficiently browsed. As a rule of thumb, there should be less than 100,000 combina-
tions of attribute values in a minidimension (i.e. less than 100,000 rows) to facilitate ef-
ficient browsing (Kimball, 1996). The number of attribute value combinations in a
minidimension can be limited by:

A slowly changing dimension is one in
which a new row is created each time
the underlying entity changes its “state”

A minidimension is a dimension table
derived from a larger dimension table
which contains a subset of attributes

that can be efficiently browsed

Including attributes in the minidimension that have discrete values (i.e. whose
underlying domains consist of a fixed set of values). Demographic classifications
like marital status, gender and education level fall into this category.
Grouping continuously valued attributes into “bands”. For example, age could
be converted to a set of discrete ranges like child (0-17), young adult (18-29),
adult (30-49), mature adult (50-64), senior citizen (65+).

Figure 4 shows how in the Order Item Star Schema, customer demographics could be
factored out into a minidimension table. Some of the attributes in the original table
have been transformed to reduce the number of rows in the minidimension table:

Journal of Business Intelligence Page 5

From ER Models to Dimensional Models: Advanced Design Issues

Number of Employees and Annual Revenue have been converted to ranges. •
• Date of First Order has been converted to Years of Service. This reduces the

number of combinations to multiples of years rather than all possible dates.

Annual Revenue

industry Class Name

Customer_ID

Number of Employeees

Customer
Dimension

Customer Name

Industry Sector Name

Industry Group Name

Date of First Order

Market Segment Name

City Name

State Name

Country Name

Population

Market Sector Name

Postal Area Name

Street Name

Account Manager

Annual Revenue Level

industry Class Name

Customer_Demographics_ID

Number of Employees Level

Customer
Demographics

Industry Sector Name

Industry Group Name

Market Segment Name

City Name

State Name

Country Name

Population

Market Sector Name

Postal Area Name

Customer_Demographics_ID

Retail_Outlet_ID

Employee_Number

Delivery_Method

Order_Number

Customer_ID

Order Item Fact

Product_ID

Order_Date

Posted_Date

Order_Quantity

Total_Price

Discount_Amount

Customer_Demographics_ID

X

X

X

Street Number

Flat/Apartment Number

Street Type

X
X

Years of Service

Postcode

Figure 4. Minidimension Table (Detailed Level Design)

Combining Dimensions

The process of creating separate dimension tables for each component entity can some-
times result in an unmanageably large number of dimensions. This is often the case
when there are a large number of classification entities attached directly to the transac-
tion entity, representing very shallow (single level) hierarchies. Rather than create a lot
of very small (possibly degenerate) dimension tables, these may be combined into a
single dimension, with each row representing a valid combination of values. As a rule
of thumb, there should be no more than seven dimensions in each star schema to en-
sure that it is cognitively manageable in size (following the “seven, plus or minus two”
principle).

4. DEALING WITH NON-HIERARCHICAL
DATA

A major source of complexity in dimensional modelling is dealing with non-
hierarchically structured data. As discussed in the previous article, dimensional mod-
els assume an underlying hierarchical structure and therefore exclude data that is natu-
rally non-hierarchical. The transformation procedure described in the previous article
effectively “weeds out” non-hierarchically structured data from the underlying ER

Journal of Business Intelligence Page 6

From ER Models to Dimensional Models: Advanced Design Issues

model in the first step (classification of entities). So what do we do if important deci-
sion making data is stored in the form of many-to-many relationships? In this section,
we describe how to handle some particular types of non-hierarchical structures that
commonly occur in practice:

Many-to-many relationships: these define network structures among entities, and
cause major headaches in dimensional modelling because they occur so fre-
quently in ER models.

•

•

•

•
•
•

Recursive relationships: these represent “hidden” hierarchies, in which the levels
of the hierarchy are represented in data instances rather than the data structure.
Generalisation hierarchies: subtypes and supertypes require special handling in
dimensional modelling, because of the issue of optional attributes. These repre-
sent hierarchies at the meta-data level only – data instances are not hierarchically
related to each other so cannot be treated as hierarchies for dimensional model-
ling purposes.

Many-to-Many Relationships

Many-to-many relationships cause major headaches in
dimensional modelling for two reasons. Firstly, they
define network structures and therefore do not fit the hierarchical structure of a dimen-
sional model. Secondly, they occur very commonly in practice. Here we consider
three types of many-to-many relationships which commonly occur in practice:

Most of the complexities involved in
“dimensionalising” ER models result
from many-to-many relationships

Time-dependent (history) relationships
Generic (multiple role) relationships
Multi-valued dependencies (“true” many-to-many relationships)

To include such relationships in a dimensional model generally requires converting
them to one-to-many (hierarchical) relationships.

Type 1. Time-dependent (Historical) Relationships
A special type of many-to-many relationship which occurs very commonly in data
warehousing applications is one which records the history of a single-valued relation-
ship or attribute over time. That is, the attribute or relationship has only one value at a
specific point in time, but has multiple values over time. As an illustration of this,
suppose that history is maintained of employee positions in the example data model.
As shown in Figure 5, the many-to-many relationship which results (Employee Posi-
tion History) breaks the hierarchical chain and Position Type can no longer be col-
lapsed into its associated component entity (Employee).

Journal of Business Intelligence Page 7

From ER Models to Dimensional Models: Advanced Design Issues

Position Type

Education
Level

Employee Order

Employment
Status

Employee
Position
History

Figure 5. Time-dependent (Historical) Relationship

There are two ways to handle this situation:

•

•

ble is the employee’s position at the time of the order,

a model, an employee may
have a number of possible roles in an order:

•
•
• They may dispatch the order

This ole
type” entity used to distinguish between the different types of relationships (

models in practice (Hay, 1996, Barker,
1990, Allworth, 1999, Simsion and Witt, 2001).

Ignore history: Convert the historical relationship to a “point in time” relation-
ship, which records the current value of the relationship or attribute. In the ex-
ample, this would mean converting Employee Position History to a one-to-many
relationship between Employee and Position Type, which records the employee’s
current position. Position Type can then be collapsed into the Employee entity,
and the Employee dimension will record the employee’s current position (i.e. at
the time of the query). The history of previous positions (including their position
at the time of the order) will be lost. A disadvantage of this solution is that it
may result in (apparently) inconsistent results to queries about past events.

Slowly changing dimension: Define Employee as a slowly changing dimension
and create a new instance in the Employee dimension table when an employee
changes position. This means that Position Type becomes single valued with re-
spect to Employee, since each instance in the Employee table now represents a
snapshot at a point in time, and an employee can only have one position at a
point in time. Position Type can again be collapsed into the Employee dimen-
sion. The difference between this and the previous solution is that the position
recorded in the dimension ta
not at the time of the query.

Type 2. Generic (Multiple Role) Relationships
Another situation which commonly occurs in practice is when a many-to-many rela-
tionship is used to represent a fixed number of different types of relationships between
the same two entities. These correspond to different roles that an entity may play in
relation to another entity. For example, in the example dat

They may receive the order
They may approve the order

 may be represented in an ER model as a many-to-many relationship with a “r

Figure 6). This is a recurring pattern in data

Journal of Business Intelligence Page 8

From ER Models to Dimensional Models: Advanced Design Issues

The intersection entity between Employee and Order means that Employee cannot be
considered as a component of the Order transaction, and therefore orders cannot be
analysed by employee characteristics. To convert such a structure to dimensional

form, the different types of relationships or roles represented by the generic relation-
ship need to be factored out into separate one-to-many relationships (

Employee
Employee

Order
Relationship

Order

Employee
Order Role

"Role Type"
Entity

Employee Order
received

dispatched
approved

Figure 6

Figure 6. Generic (Multiple Role) Relationship Converted to Specific Relationships

). Once this is done, Employee becomes a component of the Order transaction,
and can form a dimension in the resulting star schema.

Type 3. Multi-Valued Dependency (True Many-to-Many Relationship)
The final type of many-to-many relationship is when a true multi-valued dependency
(MVD) exists between two entities: that is, when many entities of one type can be asso-
ciated in the same type of relationship with many entities of another type at a single point
in time. For example, in Figure 7, each customer may be involved in multiple indus-
tries. The intersection entity Customer Industry “breaks” the hierarchical chain and the
industry hierarchy cannot be collapsed into the Customer component entity.

Industry
Group

Industry
Sector

Industry
Class

Customer
Industry

Customer Order

Figure 7. Multi-Valued Dependency (MVD)

One way of handling this is to convert the Customer Industry relationship to a one-to-
many relationship, by identifying the main or “principal” industry for each customer.
While each customer may be involved in many industries, there will generally be one
industry in which they are primarily involved (e.g. earn most of their revenue). This
converts the relationship into a one-to-many relationship, which means it can then be
collapsed into the Customer table (Figure 8). Manual conversion effort may be re-
quired to identify which is the main industry if this is not recorded in the underlying
production system.

Industry
Group

Industry
Sector

Industry
Class Customer Order

principal
industry

Figure 8. Conversion of Many-to-Many Relationship to One-to-Many Relationship

Journal of Business Intelligence Page 9

From ER Models to Dimensional Models: Advanced Design Issues

Recursive Relationships

Hierarchies are commonly represented in ER models using recursive relationships (Hay,
1996, Simsion and Witt, 2001). Using a recursive relationship, the levels of the hierar-
chy are represented as data instances rather than as entities. This gives a much more
flexible structure, which can more easily handle changes in the levels of the hierarchy
(Moody, 1996). However such structures are less useful in a data warehousing envi-
ronment, as they reduce understandability to end users and increase complexity of
queries (Spencer and Loukas, 1999). In converting an ER model to dimensional form,
recursive relationships must be converted to explicit hierarchies, with each level shown
as a separate entity. For example, the industry classification hierarchy in the example
data model may be shown in ER form as a recursive relationship (Figure 9). To convert
this to dimensional form, each row in the Industry Classification Type entity becomes a
separate entity. Once this is done, the levels of the hierarchy (which become classifica-
tion entities) can be easily collapsed to form dimensions.

Industry
Group

Industry
Sector

Industry Class

Industry
Classification

Industry
Classification

Type

Instances:
Industry Group
Industry Sector
Industry Class

Figure 9. Conversion of Recursive Relationship to Explicit Hierarchy

Generalisation Hierarchies: Subtypes and Supertypes

In the simplest case, supertype/subtype relationships can be converted to dimensional
form by merging the subtypes into the supertype and creating a “type” entity to dis-
tinguish between them. This can then be converted to a dimensional model in a
straightforward manner as it forms a simple (two level) hierarchy. This will result in a
dimension table with optional attributes for each subtype. This is the recommended
approach when there is a relatively small number of subtype specific attributes and/or
relationships.

In the more complex case – when there are many subtype-specific attributes and when
different transaction entity attributes are applicable for different subtypes – separate
dimensional models may need to be created for the supertype and each of the sub-
types. These are called heterogeneous star schemas, and are the dimensional equivalent
of subtypes and supertypes. In general, this will result in n+1 star schemas, where n is
the number of subtypes (see Figure 10):

One Core Star Schema (“dimensional supertype”): This will consist of a core fact
table, a core dimension table plus other (non-subtyped) dimension tables. The core
dimension table will contain all attributes of the supertype while the core fact ta-
ble will contain transaction attributes (facts) that are common to all subtypes.

•

Journal of Business Intelligence Page 10

From ER Models to Dimensional Models: Advanced Design Issues

•

btype.

Multiple Custom Star Schemas (“dimensional subtypes”): A separate Customer
Star Schema should be optionally created for each subtype in the underlying ER
model. Each custom star schema will consist of a custom fact table, a custom di-
mension table plus other (non-subtyped) dimension tables. Each custom dimen-
sion table will contain all common attributes plus attributes specific to that sub-
type. The custom fact table will contain all common facts plus facts applicable
only to that su

Vehicle

Vehicle

Car

Truck

Vehicle
Sales

Customer

Date

Location

VEHICLE STAR SCHEMA
(Core Star Schema or

Dimensional "Supertype")

Car
Car Sales

Customer

Date

Location

CAR STAR SCHEMA
(Custom Star Schema or
Dimensional "Subtype")

Truck Truck
Sales

Customer

Date

Location

TRUCK STAR SCHEMA
(Custom Star Schema or
Dimensional "Subtype")

Vehicle
Sale

Customer

CUSTOM DIMENSION
TABLE (supertype

attributes + car specific
attributes)

CORE DIMENSION
TABLE (supertype

attributes only)

CUSTOM DIMENSION
TABLE (supertype
attributes + truck
specific attributes)

CORE FACT TABLE
(common facts only)

CUSTOM FACT
TABLE (common facts
plus car specific facts)

CUSTOM FACT
TABLE (common facts
plus truck specific facts)

Location
Component entity

with subtypes

Figure 10. Heterogeneous Star Schemas (“Dimensional Subtyping”)

5. CONCLUSION

Of course, there are many other ways a dimensional model can be refined and many
other exceptions which can arise in practice. However it is impossible to prescribe how
to handle all such situations in advance. In this article, we have focused on the most
important issues you are likely to encounter in practice. Being aware of these should
be enough to get you to a workable dimensional model in most situations. Beyond
this, there is no substitute for experience…

REFERENCES
Allworth, S. (1999) "Classification Structures Encourage the Growth of Generic Industry

Models", In Proceedings of the Eighteenth International Conference on Conceptual
Modelling (Industrial Track)(Ed, Moody, D. L.), Springer, Paris, France.

Barker, R., CASE*Method: Entity Relationship Modelling, Addison-Wesley Professional,
Wokingham, 1990.

Hay, D.C., Data Model Patterns: Conventions of Thought, Dorset House, New York, 1996.
Kimball, R., The Data Warehouse Toolkit, John Wiley and Sons, New York, 1996.
Moody, D.L., "The Seven Habits of Highly Effective Data Modellers", Database Programming

and Design, 1996.
Moody, D.L. and Kortink, M.A.R., "From ER Models to Dimensional Models: Bridging the Gap

between OLTP and OLAP Design", Journal of Business Intelligence, 8, 2003.

Journal of Business Intelligence Page 11

From ER Models to Dimensional Models: Advanced Design Issues

Journal of Business Intelligence Page 12

Simsion, G.C. and Witt, G.C., Data Modeling Essentials: Analysis, Design, and Innovation
(2nd Ed), The Coriolis Group, 2001.

Spencer, T. and Loukas, T., "From Star to Snowflake to ERD", Enterprise Systems Journal, 1999.

	INTRODUCTION
	ALTERNATIVE DIMENSIONAL STRUCTURES: STARS, SNOWFLAKES AND STARFLAKES
	Snowflake Schema
	Starflake Schema
	Dimensional Design Trade-Offs

	REFINEMENT OF THE DIMENSIONAL MODEL
	Slowly Changing Dimensions
	Splitting Dimensions: “Minidimensions”
	Combining Dimensions

	DEALING WITH NON-HIERARCHICAL DATA
	Many-to-Many Relationships
	Type 1. Time-dependent (Historical) Relationships
	Type 2. Generic (Multiple Role) Relationships
	Type 3. Multi-Valued Dependency (True Many-to-Many Relationship)

	Recursive Relationships
	Generalisation Hierarchies: Subtypes and Supertypes

	CONCLUSION
	REFERENCES

