
1
Analysis to understand structure of XML and XSD
Running a single command covers steps 1-3
This creates a Flexter Data Flow, which analyses the XSD and/or 
XML, creates a relational target data model, and creates the 
mappings between XML source elements and target table columns

Option 1: Generating a data flow from an XML. We apply the elevate 
and reuse optimisation algorithm (g3 switch)
$ xml2er -g3 donut.xml

Option 2: Generating a Data Flow from an XSD
$ xsd2er -g3 donut.xsd

Option 3: Generating a Data Flow from an XML and XSD to get the 
best of both worlds
$ xml2er donut.xml
$ xsd2er -a4 -g3 donut.xsd

In this example we create the Data Flow from the command line. 
You can also use the Flexter API or Flexter UI to create a Data Flow.

1
Analysis to understand structure of XML and XSD
For complex schemas this process can be super time consuming. The analysis 
can take more time than all the other steps combined.

● Go through documentation of industry data standard if available.
● Understanding XML Schema/Structure.
● Pinpoint the main elements, attributes, and their hierarchies within 

the XML.
● Understand how different elements and attributes relate to each 

other.
● Identify any hierarchical structures, such as parent-child 

relationships, within the XML data.
● Checking for Repeating and Optional Elements:
● Identify elements that occur multiple times and understand their 

significance.
● Note any optional elements that may or may not appear in the 

XML.
● Understanding Namespaces
● Evaluate the size of the XML files and the complexity of the 

structure, as this will impact the mapping process.
● Evaluate XML for Anomalies or Irregularities

Manual approach using code Automated approach with Flexter

2
Model and create target schema
Already covered under Step 1

It is worthwhile mentioning that Flexter applies optimisation 
algorithms that significantly simplify the structure of the target 
schema

2
Model and create target schema
Once you have completed the analysis you need to use your findings to 
create a relational schema for the target format.

● Translate between the hierarchical structure to the 
relational format

● Map data types
● Define and implement naming conventions
● Define and implement parent-child relationships
● Define and implement constraints

https://sonra.io/xml/optimisation-algorithms-for-converting-xml-and-json-to-a-relational-format/
https://sonra.io/xml/optimisation-algorithms-for-converting-xml-and-json-to-a-relational-format/


Manual approach using code Automated approach with Flexter

3
Create mapping
Already covered under Step 13

Create mapping
Manually map the XML elements to the target table columns

4
XML Conversion
A single command is run to convert the data. The switch l3 
references the ID of the Data Flow that was generated in the 
previous step.

$ xml2er -l3 donut.zip

In this example we create the XML Conversion from the command 
line. You can also use the Flexter API or Flexter UI to convert the 
XML.

4XML Conversion
This is another very time consuming step.

● Developers write the code to load XML to the database and 
convert it with extensions to SQL such as XQuery to the 
relational database’s tables and columns.

● Developers build a data pipeline and schedule a time to run 
it.

● The solution is tested

5
Error handling, logging, and alerting
This is automatically handled as part of Step 4 XML Conversion5Error handling, logging, and alerting

In XML mapping error handling, there are two crucial checks to 
perform. Firstly, ensure that the XML to be converted is valid. Secondly, 
verify that the XML adheres to the target schema. This means it should 
not have any additional XML elements and must comply with the 
specified data types.



6
Documentation
Already covered under Step 1

When creating the Data Flow Flexter stores all of the information in 
its metadata catalog. The metadata can then be used to auto 
generate Source to Target Maps, ER diagrams, and diffs and deltas 
between different versions of a schema.

6
Documentation
The most important documentation artefact is a Source to Target Map 
(STM). The STM acts as a blueprint that defines how each piece of data 
is transformed and transferred from the source to the target. It 
specifies how each field in the XML corresponds to the target including 
any data type conversions.

Manual approach using code Automated approach with Flexter

7
Refactoring for changes
Flexter ships with a metadata store that semi-automates the 
upgrade between different versions of an XML or XSD.

7
Refactoring for changes
If changes are made to the XML or the XML schema you need to repeat 
steps 1-6 to cater for the change


